

## Calculating the pH of a solutions Strong and weak acids and bases

Dr inż. Jolanta Lis-Kuberka Wroclaw, 01.04.2020 jolanta.lis-kuberka@umed.wroc.pl

## pH Scale

pH is a measure of the concentration of hydrogen ions in a solution. Strong acids like hydrochloric acid at the sort of concentrations you normally use in the lab have a pH around 0 to 1. The lower the pH, the higher the concentration of hydrogen ions in the solution.

The mathematical definition of pH is a bit less intuitive but in general more useful. It says that the pH is equal to to the **negative logarithmic value of the Hydrogen ion (H<sup>+</sup>)** concentration, or

*pH* = -*log* [*H*<sup>+</sup>]



 $pH = -log[H^+]$  $[H^+] = antilog(-pH)$ 

□ Find the pH of a 0.0025 M HCl solution.

$$pH = -\log(0.0025) = -(-2.60) = 2.60$$

□ What is the hydronium ion concentration in a solution that has a pH of 8.34?

$$8.34 = -\log [H_3O^+]$$
  
-  $8.34 = \log [H_3O^+]$   
 $[H_3O^+] = 10^{-8.34} = 4.57 \times 10^{-9} M$ 

#### $pOH = -log[OH^-]$ $[OH^-] = antilog(-pOH)$

□ What is the pOH of a solution that has a hydroxide ion concentration of  $4.82 \times 10^{-5}$  M?

$$pOH = -\log [4.82 \times 10^{-5}] = -(-4.32) = 4.32$$

□ What is the hydroxide ion concentration in a solution has a pOH of 5.70?

$$5.70 = -\log [OH^{-1}]$$
  
 $-5.70 = \log [OH^{-1}]$   
 $[OH^{-1}] = 10^{-5.70} = 2.00 \text{ x } 10^{-6} \text{ M}$ 



pH + pOH = 14

□ A solution has a pOH of 11.76. What is the pH of this solution?

pH = 14 - pOH = 14 - 11.76 = 2.24

## Strong Acids vs Weak Acids

Strong acids are molecules that completely dissociate into their ions when it is in water Weak acids are molecules that partially dissociate into ions in aqueous solution

pH of a strong acid solution is very low

pH of a weak acid solution is about 3-5

Acid dissociation constant is a higher value Acid dissociation constant is a lower value

Release all the H+ ions to the solution

Do not release all H+ ions

Visit www.pediaa.com

## Strong Bases vs Weak Bases

A strong base is a compound that can completely dissociate into its cation and hydroxyl ion in aqueous solution

Dissociate into ions almost 100%

Indicated by a pH value closer to 14 A weak base is a compound that partially dissociates into its hydroxyl ion and the cation creating an equilibrium condition

> Partially dissociate into ions

Indicated by a pH value greater than 7 but lower than 14

Highly reactive pKb value is almost 0 pKb value is high

Visit www.pediaa.com

## Strong Acids & Strong Bases



|      | perchloric acid        | HCIO <sub>4</sub>                                                                                                                                   |                               | ſ                                                     | CIO <sub>4</sub>                             | perchlorate ion          |      |
|------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------|----------------------------------------------|--------------------------|------|
|      | sulfuric acid          | c acid H <sub>2</sub> SO <sub>4</sub> Undergo Do not<br>gen iodide HI acid base<br>gen bromide HBr ionization<br>gen chloride HCI in water in water | Do not                        | $HSO_4^-$                                             | hydrogen sulfate ion                         |                          |      |
|      | hydrogen iodide        |                                                                                                                                                     | undergo<br>base<br>ionization | IT.                                                   | iodide ion                                   |                          |      |
|      | hydrogen bromide       |                                                                                                                                                     |                               | Br <sup>-</sup>                                       | bromide ion                                  |                          |      |
|      | hydrogen chloride      |                                                                                                                                                     | in water                      | CL                                                    | chloride ion                                 |                          |      |
|      | nitric acid            | HNO <sub>3</sub>                                                                                                                                    |                               | l                                                     | NO <sub>3</sub>                              | nitrate ion              |      |
|      | hydronium ion          | $H_3O^+$                                                                                                                                            |                               |                                                       | H <sub>2</sub> O                             | water                    |      |
|      | hydrogen sulfate ion   | HSO <sub>4</sub>                                                                                                                                    |                               |                                                       | SO42-                                        | sulfate ion              |      |
|      | phosphoric acid        | H <sub>3</sub> PO <sub>4</sub>                                                                                                                      |                               |                                                       | $H_2PO_4^-$                                  | dihydrogen phosphate ion | Inc  |
|      | hydrogen fluoride      | HF                                                                                                                                                  |                               |                                                       | F <sup>-</sup>                               | fluoride ion             | reas |
|      | nitrous acid           | HNO <sub>2</sub>                                                                                                                                    |                               |                                                       | $NO_2^-$                                     | nitrite ion              | gni  |
|      | acetic acid            | CH3CO2H                                                                                                                                             | ł                             |                                                       | CH <sub>3</sub> CO <sub>2</sub> <sup>-</sup> | acetate ion              | base |
|      | carbonic acid          | H <sub>2</sub> CO <sub>3</sub>                                                                                                                      |                               |                                                       | HCO <sub>3</sub> <sup>-</sup>                | hydrogen carbonate ion   | str  |
| 2121 | hydrogen sulfide       | H <sub>2</sub> S                                                                                                                                    |                               |                                                       | HS <sup>-</sup>                              | hydrogen sulfide ion     | Igue |
|      | ammonium ion           | NH4+                                                                                                                                                |                               |                                                       | HN <sub>3</sub>                              | ammonia                  | 7    |
|      | hydrogen cyanide       | HCN                                                                                                                                                 |                               |                                                       | CN <sup>-</sup>                              | cyanide ion              |      |
|      | hydrogen carbonate ion | HCO3                                                                                                                                                | HCO <sub>3</sub> <sup>-</sup> |                                                       | CO32-                                        | carbonate ion            |      |
|      | water                  | H <sub>2</sub> O                                                                                                                                    |                               |                                                       | OH-                                          | hydroxide ion            |      |
|      | hydrogen sulfide ion   | HS-                                                                                                                                                 | ]                             |                                                       | S <sup>2-</sup>                              | sulfide ion              |      |
|      | ethanol                | C <sub>2</sub> H <sub>5</sub> OH                                                                                                                    | Do not<br>undergo<br>acid     | Undergo<br>complete<br>base<br>ionization<br>in water | C <sub>2</sub> H <sub>5</sub> O <sup>-</sup> | ethoxide ion             |      |
|      | ammonia                | NH <sub>3</sub>                                                                                                                                     |                               |                                                       | NH <sub>2</sub> <sup></sup>                  | amide ion                |      |
|      | hydrogen               | H <sub>2</sub>                                                                                                                                      | ionization                    |                                                       | н-                                           | hydride ion 🗧 🗧          | 7    |
|      | methane                | CH <sub>4</sub>                                                                                                                                     | J                             |                                                       | СН3                                          | methide ion              |      |
|      |                        |                                                                                                                                                     |                               |                                                       |                                              |                          |      |

creasing acid strengt

Write the balanced chemical equation for the dissociation of Ca(OH)<sub>2</sub> and indicate whether it proceeds 100% to products or not.

#### Solution

This is an ionic compound of Ca<sup>2+</sup> ions and OH<sup>-</sup> ions. When an ionic compound dissolves, it separates into its constituent ions:

 $Ca(OH)_2 \rightarrow Ca^{2+(aq)}+2OH^{-}(aq)$ 

Because  $Ca(OH)_2$  is in 2<sup>nd</sup> group of the periodic table, this reaction proceeds 100% to products.

Write the balanced chemical equation for the dissociation of  $H_2SO_4$  and indicate whether it proceeds 100% to products or not.

#### Solution

This is an ionic compound of  $H^+$ ,  $HSO_4^-$  ions and  $SO_4^{2-}$  ions. When an ionic compound dissolves, it separates into its constituent ions:

 $H_2SO_4 \rightarrow H^{+(aq)} + HSO_4^{-}(aq)$ 

 $H_2SO_4 \rightarrow H^{+}(aq) + SO_4^{2-}(aq)$ 

Because H<sub>2</sub>SO<sub>4</sub> is strong acid, this reaction proceeds 100% to products.





## pKa and Dissociation Equilibrium

When an acid dissociates, it releases a proton to make the solution acidic, but weak acids have both a dissociated state (A<sup>-</sup>) and undissociated state (AH) that coexist according to the following dissociation equilibrium equation.

The concentration ratio of both sides is constant given fixed analytical conditions and is referred to as the acid dissociation constant (Ka). Ka is defined by the following equation.

Based on this equation, **Ka** expresses how easily the acid releases a proton (in other words, its strength as an acid). In addition, the equation shows how the dissociation state of weak acids vary according to the [H<sup>+</sup>] level in the solution. Carboxylic acids (containing -COOH), such as acetic and lactic acids, normally have a Ka constant of about 10<sup>-3</sup> to 10<sup>-6</sup>. Consequently, expressing acidity in terms of the Ka constant alone can be inconvenient and not very intuitive. Therefore, pKa was introduced as an index to express the acidity of weak acids, where pKa is defined as follows.

For example, the Ka constant for acetic acid (CH<sub>3</sub>COOH) is 0.0000158 (=  $10^{-4.8}$ ), but the pKa constant is 4.8, which is a simpler expression. In addition, the smaller the pKa value, the stronger the acid. For example, the pKa value of lactic acid is a bout 3.8, so that means lactic acid is a stronger acid than acetic acid.

 $AH \leftrightarrow A^{-}(aq) + H^{+}(aq)$ 

 $K_a = \frac{[A^-][H^+]}{[AH]}$ 

 $pK_a = -log_{10}K_a$ 

#### Short pKa table







K<sub>a</sub> for CH<sub>3</sub>CO<sub>2</sub>H is approximately 10<sup>-5</sup>

i.e. only 1 molecule in 100,000 is **DISSOCIATED** (ionised).

 $-\log_{10}K_a = pK_a$ 

So pKa for acetic acid is 5



i.e. 100,000 molecules are DISSOCIATED (ionised) for every one undissociated.

The pKa of H<sub>2</sub>SO<sub>4</sub> is therefore -5



i.e. only 1 molecule in 1,000,000,000 is **DISSOCIATED** (UNIONISED).

A weak conjugate acid does not easily donate its proton (1 molecule in 1,000,000,000 donates a proton)

Therefore a strong base willingly accepts a proton (1,000,000,000 molecules accept a proton for every one)

#### pKa is a different term than pH

# pH is simply a measure of the [H<sup>+</sup>] concentration in a given solution

pH = 1 .....the environment is acidic pKa = 1 DOES NOT mean an acidic molecule

pH = 14 .....the environment is basic pKa = 1 DOES NOT mean a basic molecule

# pKa vs pH

pKa is the negative value of the logarithmic of Ka

pH is the logarithmic value of the inverse of H+ concentration

Indicates whether an acid is a strong acid or a weak acid

Gives details of the dissociation of an acid in aqueous solution

If the pKa of an acid is high, it is a weak acid; if the pKa of an acid is low, it is a strong acid Indicates whether a system is acidic or alkaline

Gives details about the concentration of H+ ions in a system

If the pH of a system is high, the system is alkaline; if the pH is low, that system is acidic

Depends on the concentration of acid, conjugate base and H+ Depends on the H+ concentration

Visit www.pediaa.com

#### Factors affecting the strength of the acid

- The more stable conjugate base (anion) formed, the stronger the acid will be
- So any factor will stabilize the anion will increase the acidity of the group, such as resonance and induction stabilization
- Stable negative charge results from lowering the electron density on the atom

#### Which one is the stronger acid?

#### **Considering Ka values relates ratio of products to reactants**



#### Factors affecting the strength of the base



- If the atom has an available lone pair of electrons, it can act as a base....
- The availability of these electrons will determine the strength of the base
  - As a result of that, aromatic amino group is much weaker base than aliphatic one



tertiary amine: methyl groups compared to phenyl group are better donating groups by induction (more available lone pair of electrons)



the lone pair of electrons are not available....delocalized through the phenyl group (stable by resonance)

#### Which one is the stronger base?



#### Aromatic amines are weaker bases than aliphatic amines

## Ionization and dissociation of drug





# Common acidic functional groups in pharmaceutical chemistry and their pKa values





#### **Examples of acidic drugs**





Tolbutamide hypoglycemic agent



Aspirin NSAID



Cephalexin Antibacterial agent

# Common basic functional groups in pharmaceutical chemistry and their pKa values



#### **Examples of basic drugs**



# Common neutral functional groups in pharmaceutical chemistry









| - | 73                      |
|---|-------------------------|
|   | 2                       |
|   | <b>O</b>                |
|   | Ň                       |
|   | IN                      |
| - |                         |
|   | C                       |
|   |                         |
|   | U                       |
| - | _                       |
|   | Sec. 1                  |
|   | >                       |
| - | _                       |
|   | $\overline{\mathbf{n}}$ |
|   | $\simeq$                |
|   | C                       |
|   | =                       |
|   | ťΛ                      |
|   | ~                       |
|   | СD                      |
|   | <b>A</b> 5              |
|   | Ψ                       |
|   | 1                       |
|   | ()                      |
|   | $\simeq$                |
|   |                         |
|   | _                       |
|   |                         |
|   | S                       |
|   | <b>*</b>                |
|   | O                       |
|   | -                       |
|   | ~                       |
|   | ~                       |
|   | $\overline{\mathbf{n}}$ |
|   | ~                       |
|   | 05                      |
|   | U                       |
|   | 10                      |
|   | S                       |
|   | <b>T</b>                |
|   | ŝ                       |
| 1 | $\mathbf{n}$            |
|   |                         |
|   |                         |

| Bases                      | рΗ  |  |
|----------------------------|-----|--|
| Weak                       |     |  |
|                            | 2   |  |
| Diazepam (pK∝3.3)          | 3   |  |
|                            |     |  |
| Chlordiazepoxide (pKa 4.8) | 4   |  |
|                            | 5   |  |
| Triamterene (pK₃6.2)       | 6   |  |
| Trimethoprim (pKa 7.2)     |     |  |
| Ergometrine (pKa7.3)       |     |  |
| Physiological pH           | 7.4 |  |
| Etidocaine (pKa 7.7)       |     |  |
| Lidocaine (pKa7.9)         |     |  |
| Morphine (pK₃8.0)          | 8   |  |
| Cocaine (pKa8.4)           |     |  |
| Propranolol (pKa9.5)       | 9   |  |
| Atropine (pK₃ 9.7)         |     |  |
| Amphetamine (pKa9.8)       |     |  |
| Amantadine (pK₃10.8)       | 10  |  |
| Lorazepam (pK₃11.5)        | 11  |  |
| Neostigmine (pKa12)        | 12  |  |
| Strong                     |     |  |

| Acids                               |
|-------------------------------------|
| Strong                              |
| Penicillin G (pKa 2.8)              |
| Probenecid (pKa 3.4)                |
| Aspirin (pK₃ 3.5)                   |
| Furosemide (pKa 4.7)                |
| Warfarin (pK₅5.1)                   |
| Sulfamethoxazole (pKa5.8)           |
| Cimetidine (pK₃6.8)                 |
|                                     |
| Dhusialaniaaladu                    |
|                                     |
| Thiopental (pKa 7.5)                |
| Phenobarbital (pKa7.5)              |
| Phenytoin (pK₃8.3)                  |
| Chlorthalidone (nK <sub>2</sub> 94) |
| omorana and (preas)                 |
|                                     |
|                                     |
|                                     |
| Ascorbic acid (pK₅ 11.6)            |

# Acidic drug increasingly ionized

Weak

#### Importance of environmental pH & drug pKa

- Degree of ionization (polarity) depends on the pKa of drug (and pH of body fluid)
- pKa: value of drug pH when the concentration of ionized and non-ionized drug form is equal
- If pKa of a drug is equal to pH of the media, then ... "50% of the drug are ionized & 50% are non-ionized"

What is the importance of studying the pKa values for Acidic and Basic drugs ???

- Only the unionised form of a drug can partition across biological membranes (providing the unionized form is lipophilic)
- The ionised form tends to be more water soluble (required for drug administration and distribution in plasma)

The Human Digestive System

| Plasma              | 7.35 - 7.45 |  |  |
|---------------------|-------------|--|--|
| Buccal cavity 6.2 – | 7.2         |  |  |
| Stomach             | 1.0 - 3.0   |  |  |
| Duodenum            | 4.8 - 8.2   |  |  |
| Jejunum & ileum     | 7.5 – 8.0   |  |  |
| Colon               | 7.0 - 7.5   |  |  |



#### TABLE 1.2 pH of Body Fluids

| Fluid           | рН        |
|-----------------|-----------|
| Stomach fluid   | 1.0-3.0   |
| Small intestine | 5.0-6.6   |
| Blood           | 7.35-7.45 |
| Kidney urine    | 4.5-7.5   |
| Saliva          | 6.2–7.2   |
| CSF             | 7.3–7.4   |

Absorption after ingestion is effected by pH gradient between the drug and absorbing surface.

In the <u>stomach</u>, which is highly acidic, acidic drugs are absorbed while basic drugs tend to accumulate.

In the **intestine**, which is only slightly acidic, basic drugs are better absorbed than acidic drugs.





#### PARTITIONING OF ACIDS AND BASE

# For <u>acidic drugs</u>, with a pKa of 4.0, the ionization state will be as follows



#### For <u>basic drugs</u>, the ionization state will be as follows



## Remember the followings !!!

#### For ACIDS:

- 1. A high pKa means the species is predominantly unionised, is a bad proton donor, and a weak acid
- 2. A low pKa means the species is predominantly ionised, is a good proton donor, and a strong acid

pH < pKa by 2 units, 99% unionised pH > pKa by 2 units, 99% ionised



- 1. A high pKa means the species is predominantly ionised, is a good proton acceptor, and a strong base
- 2. A low pKa means the species is predominantly unionised, is a bad proton acceptor, and a weak base

pH < pKa by 2 units, 99% ionised pH > pKa by 2 units, 99% unionised Unionized = mimic lipid  $\rightarrow$  $\uparrow$  ABSORPTION $\downarrow$  EXCRETIONIonized = mimic water  $\rightarrow$  $\downarrow$  ABSORPTION $\uparrow$  EXCRETION

Acidic drugs in basic solution  $\rightarrow \uparrow$  EXCRETION Basic drugs in acidic solution  $\rightarrow \uparrow$  EXCRETION



个ABSORPTION

- Acidic drugs in acidic solution  $\rightarrow \downarrow$  EXCRETION
- Basic drugs in basicsolution  $\rightarrow \downarrow$  EXCRETION

## Ionization and lipophility

When the drug become ionized, this will increase its water solubility becease there will be a better solvation by ionic-dipole interaction between ionized drug and water molecule.

So, once the drug get ionized, are more polar.

Because most drugs are ionizable at different body pH ranges, the % ionization must be taken into consideration when we are about to synthesize or develop certain drug.

Lipophilicity will determine from where the drug will be absorbed and what tissue will reach.

#### **Practice question**

Loratadine is an orally available drug, it has a pKa of 5, answer the followings according to its structure:

- Is it basic, acidic or neutral compound?
- Where do you think loratadine will be absorbed (in stomach ph=2 or in intestine ph=8)





In stomach pH=2 so: pH < pKa more than 99% ionised In intestine pH=8 so: pH > pKa more than 99% unionised

# It will be better absorbed from intestinal membrane not from stomach

#### **FINAL SLIDE**

#### Thank you for your attention

This presentation has been prepared for educational purposes as part of the Medicinal Chemistry course for Students of Faculty Medicine Wroclaw Medicine University.